If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+4t-7=0
a = 2; b = 4; c = -7;
Δ = b2-4ac
Δ = 42-4·2·(-7)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{2}}{2*2}=\frac{-4-6\sqrt{2}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{2}}{2*2}=\frac{-4+6\sqrt{2}}{4} $
| (3x+15)+2x+5)=180 | | 7x=5.4 | | -4(2y-5)=68 | | x=57=81 | | 30=5-(n+4) | | 3x+5+7x+25=180 | | 13x^2-36x-324=0 | | 0.04*x=10 | | 13u-6u=14 | | 700x+40+.45=48.10 | | -8=-3+5x | | -52=-u/6 | | v−2=2 | | 42=y/3+17 | | 3/m-7=1 | | 13=4x+11+ | | (3t-5)=(t+2) | | 28-(3x+4)=2x+12+1x | | -8(6+r)=32 | | -2(b+12)=-18 | | 51=8v+9v | | 1/4x-3=1/2x+1 | | 3=r+12/2 | | 3t-5=t+2 | | 3(3m+2+6m)=60 | | 72=8(r+6) | | 6/d=8/12 | | 4=2(r–4) | | 56=-10y+2y | | 11+b=11 | | 9/2-8=5.5+4m | | 2/5(3x-4)=4/5 |